Author
Stephen Meier

Stuart D. Brorson

Stuart D. Brorson

SDB

SDB

SDB

Footprint creation for the
open-source layout program “PCB”

e-mail

sdb@cloud9.net

sdb@cloud9.net

sdb@cloud9.net

sdb@cloud9.net

sdb@cloud9.net

Date
2003, 2004
12/27/04

01/29/05

08/05/07
8.11.2007

8.18.2007

Changes made
Wrote initial document.

Formatting changes, added more tables
& info.

Included dimensioned pad drawing,
incorporated changes suggested by Dan
McMahill, updated ElementArc, other
improvements.

Updated to reflect current state of PCB
file format.

Incorporated fixes/suggestions from DJ
Delorie and Stefan Salewski

Incorporated error corrections from DJ.
Also first release under the GFDL.

Copyright © 2003 Meier Rippin L.L.C.
Copyright © 2004 MRA Tek LLC
Copyright © 2004 — 2007 Stuart D. Brorson

This document is released under the terms of the GNU Free Documentation License. For more

p. 1 of 27

information, visit: http://www.gnu.org/licenses/fdl.html

mailto:sdb@cloud9.net
mailto:sdb@cloud9.net
mailto:sdb@cloud9.net
mailto:sdb@cloud9.net

Introduction

PCB is an open-source program used for physical design of printed circuit boards (i.e. board layout).
PCB is a freely-downloadable, GPL'ed application which runs on Linux, BSD, and other unicies
supporting X11. PCB is part of the gEDA suite (http://www.geda.seul.org/). The homepage of PCB is
http://pcb.sf.net/. If you are unfamiliar with PCB design or the gEDA suite, you should take time to
familiarize yourself with these topics before continuing this document.

When designing a printed circuit board, one of the most important things you need to define are the
land patterns -- or footprints -- for each device. Like any layout program, PCB needs a footprint for
each device. The footprint tells PCB how to draw the device pads or pin holes, silk screen outline,
device name, and other properties associated with an individual component. The footprints used in PCB
are usually stored in an external file, and are read into PCB itself when the PCB is created or updated.
One of the major advantages of using PCB is that the footprint files are plain ASCII, and are well
structured. The purpose of this document is to detail how PCB footprints (land patterns) are defined in
the footprint files, and explain how to use them effectively during layout using PCB.

An unusual feature of PCB is that it supports two entirely separate footprint libraries with two entirely
different footprint mechanisms. This is because PCB is an old program which has been developed by
many different people for many different platforms over more than two decades. Due to its history,

PCB has had to handle varying limitations imposed by target platform speed, memory size, and so on.

The first footprint system is referred to as the “oldlib”, or the “M4 library”. This system is historic; it
relies upon using the GNU macro language M4 to generate footprints on the fly while PCB is running.
Footprints living in the M4 library are prefixed by a tilde (“~”) -- for example, “~geda”. This
document does not cover usage of the M4 library! Indeed, we recommend that you avoid the M4
library — it is deprecated for creating new footprints. However, the M4 library is large, has many
adherents, and it is an integral part of PCB, so it probably won't disappear anytime soon.

The second footprint system for PCB is called the “newlib”. Newlib footprints are defined using ASCII
text files which define each graphical primitive which makes up an entire footprint. This document
focuses exclusively on defining and using newlib footprints. You can use newlib footprints which are
distributed with PCB, or you can create your own, and put them in a dedicated directory.

There are several ways to create a newlib footprint using PCB. For example, you may create a footprint
graphically within PCB by drawing it, and then saving it out. This procedure is documented in the
main PCB documentation; we will not cover it here. This document will concentrate on how footprints
are defined within the ASCII footprint file itself. Using this information, you can either create a
footprint from scratch using a text editor, or copy an existing footprint, and edit its parameters to
correspond exactly to the footprint which you wish to create. Power users of PCB usually prefer the
latter method for footprint creation, because it's easy to start with a known symbol, and manually
editing the footprint file gives you the most control over your footprint.

Understanding how to correctly set up footprints in a footprint file is important. A footprint can

p- 2 of 27

http://pcb.sf.net/
http://www.geda.seul.org/

critically effect the manufacturability of the board it lives on. If a footprint's pads are in the wrong
place, or the solder mask relief is incorrectly defined, it can be impossible to attach the device to its
pads. If the solder mask doesn't cover traces near pads, the traces may become soldered to the pads.
Boards using footprints that have the pads in the correct spot but of the wrong size can have a reduced
manufacturing yield and possibly a reduced life. Therefore, properly defining your footprints is a
critical part of creating a working PCB. See the standards document IPC-SM-782A ““‘Surface Mount
Design and Land Pattern Standard” for a more complete discussion of the requirements and impacts of
surface mount patterns.

p. 3 of 27

How footprints are used in your .pcb file

In the PCB layout file itself (usually called something like “foo.pcb”), an individual footprint is called
an “Element”. If you examine a .pcb file, you will see many Element declarations throughout the file —

you should have one declaration for each component you have placed on your layout.

The first line of the Element entry holds top-level information about the footprint itself. Within the
element are held the atomic graphical elements making up the footprint. The atomic graphical
elements include solder pads, through-holes for pins, lines drawn on the silkscreen layer, and other
items which comprise a footprint. For example, here is a simple PCB land pattern for an 0805 chip
resistor. First, here's the footprint graphic (which is what is placed in PCB):

File Edit View Settings Select Buffer Connects Info Window Unnamed

solder mask

O ||\
WIA | LIME | ARC
TEAT | RECT | FOLY

0% o
BUF | DEL | ROT

o | 31 | W
NS | Thi | SEL

2]
LOCK

Route Style

@ Signal
Power
Fat
Skinny

4

110.00 20.00 || mil

view=component grid=10.0:0 45_/ line=10.0 via=36.0(20.0) clearance=10.0 text=100% buffer=#1

Figure 1: Footprint of two pad 0805 passive.

Next, here's the footprint file which generates the above footprint:

El ement["" "" 1000 1000 -1000 -1000 O 60 ""]
Pad[- 3000 0 -3000 O 4000 1200 4600 "" "1"
Pad[3000 0 3000 0 4000 1200 4600 "" "2"
El ement Li ne [-5000 -3750 6250 -3750 600]
El ement Li ne [6250 -3750 6250 3750 600]
El ement Li ne [6250 3750 -5000 3750 600]
El ement Li ne [-5000 3750 -6250 2500 600]
El ement Li ne [-6250 2500 -6250 -2500 600]
El ement Li ne [-5000 -3750 -6250 -2500 600]

p. 4 of 27

"square"]
"squar e, edge2"]

Within the parentheses after “Element” is information pertaining to the entire footprint, such as its
mark position, a placeholder for its refdes, and so on. Following the top-level information, you can see
two “Pad” graphical elements. This example 0805 chip resistor requires two pads; other devices may
require hundreds of them, leading to hundreds of “Pad” lines in such a part. The information within
the “Pad” line specifies the size of the solder pad, any clearance around the pad, each pad's name and
number, and other attributes. The “ElementLine” graphical element produces a line drawn on the
silkscreen layer. In this example, there are six “ElementLine” elements drawn on the silkscreen layer,
corresponding to the rectangular box around the 0805 footprint along with two chamfered edges on the
left. The information within the “ElementLine” line specifies the width and position of the lines
drawn on the silkscreen layer.

Further details about defining these graphical elements are provided in latter sections of this document.

p. 5 of 27

Peculiarities of PCB

Due to its long history of development, PCB has a number of quirks which you need to be aware of.
This section attempts to list some of these quirks relevant to creating and editing footprint files.

® Coordinate system. It is particularly important to remember that PCB uses a standard computer
graphics coordinate system, and not a Cartesian coordinate system. This means that X increases to
the right (as is normal), but Y increases downwards. Please keep this in mind when defining the
graphical locations of footprint elements.

® Units. Originally, PCB used mils (1/1000ths of an inch) as the basic unit of measure. However,
recent upgrades to the program have improved its resolution to 1/100 mils (107 in). Both units are
used freely in the footprint files. By definition, units held in round parentheses “()” are mils. Units
contained in square braces “[]” are in 1/100 mils. Be aware of this dichotomy, and always check
how your units are specified!

We recommend you to use the new, square brackets and avoid the old, round brackets when
defining your footprints!

® Absolute vs. relative coordinates. The “Element” declaration calls out the location of the “mark™,
which specifies the position of the entire footprint in the .pcb file. If the Element declaration's
parameters are surrounded by round brackets “()”, then the other graphical elements used in the
footprint are specified using absolute units. That is, the footprint's individual parts (ElementLine,
Pad, etc.) are positioned relative to the (0, 0) position of the PC board. When you move an
absolute units footprint in PCB, then PCB will overwrite all position coordinates used by the
individual graphical elements with the new position coordinates. We recommend that you do not
use the old round brackets — they are a deprecated, legacy feature of PCB!

If the “Element” declaration uses square brackets -- “[]” -- then the other graphical elements used
in the footprint are specified using relative units. That is, the footprint's individual parts
(ElementLine, Pad, etc.) are positioned relative to the mark position called out in the Element tag.
When you move a relative units (square bracket) footprint in PCB, then PCB will only update the
position of the mark held in the Element declaration; the other coordinates used in the footprint
remain the same. We recommend you to use the new, square brackets and avoid the old, round
brackets when defining your footprint's Element line!

® Footprint libraries. The original PCB footprint library was written using the macro language M4,
which is considered by some to be an obscure language. A modern graphical footprint library
system — newlib — has been developed for PCB. Most new footprints contributed to the PCB project

use the newlib footprint syntax. Only the newlib library syntax is described in this document.

® PCB's Solder Mask Relief Implementation. PCB only allows for the Pad line to determine the

p. 6 of 27

solder mask relief size and shape. Therefore creating gang shadow mask windows (see Glossary) can
only happen by setting the Pad sizes and correctly placing the individual components close enough
together such that the shadow mask windows merge.

Keepouts. Currently, PCB doesn't have the concept of a keepout. Therefore, you must track any
keepout constraints manually. A poor man's component keepout may be produced by encircling your
footprint with a boundary drawn on the silkscreen layer. The silkscreen should extend a little bit
beyond the part's outline in all directions. Then, during layout manually verify that no silkscreen
boundaries touch each other. Note that no DRCs will show up using this method, so you must take
care when placing and inspecting your parts.

p.7 of 27

Developing a new footprint for PCB — work flow

When creating a new footprint file, you will typically follow a work flow like this:

1.

Determine the mark to be used by the footprint. This is often either the center of the part, or the
location of pin 1. It calls out the position of the entire footprint once the footprint is placed on the
larger PCB.

. Determine the rotational orientation of the text. In PCB, this may be 0, 90, 180, or 270 degrees.

. Determine the grid placement courtyard and its relationship to the center. The grid courtyard is the

total area encompassed by the footprint. When mounted, the component itself will be centered in
the courtyard. Determining the grid placement courtyard is particularly important if you plan to
assemble your design using a pick-and-place machine since the machine wants to place components
at particular positions on the grid. Consult your assembly house for more information about their
requirements. If you are hand-assembling your board, you don't need to worry about this.

. Determine the soldering method to be used. Wave and reflow soldering processes place different

requirements upon the pad dimensions, as well as the solder mask clearances. Further information
about this topic can be obtained from IPC documents, or from your assembly house.

. Determine the pad locations and sizes. This is usually found in the materials supplied by the part

vendor. Alternately, you can consult IPC documents which specify recommended footprints for
many common parts. Keep in mind that pad location and size depend — to some extent — upon your
board manufacturer's tolerances as well as your solder method. Again, either use conservative
numbers for your pad dimensions or speak to your board house about their recommended design
rules.

. Determine the solder mask application method and its tolerances. Further information about this

topic can be obtained from IPC documents, or from your assembly house.

Determine the solder mask relief size. This depends upon the type of soldering process you intend
on using, the tolerances your board house can meet, and other factors. It is always best to use
conservative numbers, or consult with your board manufacturer and assembly house first.

. Open a footprint file in a directory on your PCB search path. Typically, you will want to name the

file something suggestive of the footprint held within it. Typically, Element declaration is placed
into a single footprint file. Although, no file name suffix is enforced by the PCB program, modern
gEDA convention calls for “.fp” as the suffix used for footprints. Examples footprint names include
“Res_0805_large.fp” or “TQFP-44.fp”.

. Create the Element macro within the footprint file.

10.Within the Element body, add a Pad line for each component pad.

p. 8 of 27

11.Within the Element body, add a Pin line for each component through-hole pin. You can also use a
Pin line to define a through-hole for component mounting.

12.Within the Element body, add ElementLine or ElementArc lines to create the footprint outline on the
silkscreen layer. The footprint outline needn't encircle the grid placement courtyard but doing so can
be convenient for correct placement.

13.Save your footprint file.

14.1f you are using gschem — the schematic capture program which is part of the gEDA Suite — you
attach a footprint attribute to each part which calls out the name of the footprint file you created as
its value. (That is, the name=value pair you want is footprint=foo.fp”.) The utility program
“gattrib” is very useful for efficiently attaching footprint attributes to a design which you have
already drawn.

p- 9 of 27

Anatomy of a footprint

To understand the parameters used in defining a footprint, consider the footprint used by SMT resistors.
A footprint is shown in the figure below.

Grid Placement
Courtyard

Z

Figure 2: Example footprint for an SMT resistor.

The blue areas correspond to bare metal. This is where you will solder the component's pads to your
board. The green area is the placement courtyard. This is the area taken by the component itself (along
with some additional area to compensate for the component's dimensional variability due to
manufacturing tolerances).

Dimensional data for different resistor sizes are presented in the following table.

Type C X Y Z G Grid

'0402 51.2 27.5 354 86.6 15.7 39.4x118.1
'0603 66.9 39.4 43.3 110.2 23.6 157.5x118.1
'0805 74.8 59.1 51.2 126.0 23.6 157.5x315.0
1206 110.2 70.9 63.0 173.2 47.2 157.5x393.7
1210 110.2 106.3 63.0 173.2 47.2 118.1x393.7
2010 173.2 106.3 70.9 2441 102.4 118.1x551.2
2512 220.5 126.0 70.9 291.3 149.6 315.0x629.9

Dimensions C, X, Y, Z, G and Grid are all in mils. Data is derived from the table on page 73 Of IPC-
SM-782A “Surface Mount Design and Land Pattern Standard”. Note that this data is example data for
the purposes of fixing ideas only. Depending upon the details of your particular manufacturing process
(wave vs. reflow solder, assembly tolerances, etc.) the dimensional values you use may differ from
those in the above table by several mils or more.

Each PCB Pad impacts several layers. If the Pad is on the component (top) side of the board, it impacts

p. 10 of 27

the component layer (where the pad lives), the mask (component-side solder mask relief) and the paste
(component-side solder paste) layer. If the Pad lies on the solder (bottom) side of the board, it impacts
the solder layer (where the pad lives), the mask (solder-side solder mask relief) and the paste (solder-
side solder paste) layer.

Each instance of a macro needs its parameters selected for the manufacturing techniques used to place
and solder the components to the board. The standards document (IPC-SM-782A) will cover these in
detail. The scope of this paper will be how to use the standards document to generate suitable PCB
footprints.

p. 11 of 27

Footprint creation do's and dont's

Do — Please name your footprint file using “.fp” as a suffix. This is a newly accepted PCB best
practice

Do — Use the square bracket footprint definition syntax. Avoid the round bracket footprint syntax;
it is deprecated.

Do — Make sure your solder pads are large enough for SMT devices. The pad should provide
sufficient room for development of a solder meniscus between your part and the pad itself. Vendor
recommended pads are usually OK. However, it sometimes helps to increase the pad size by a few
mils in each dimension if you have the real estate on your board. However, don't go overboard on
fine-pitch parts; if the pads get too close together, you run the risk of creating solder bridges between
adjacent pads!

Do — Double check all your footprints (and your layout too). A sizable number of board mistakes
arise from simple footprint errors due to carelessness. Things to check for:

v Are your pin holes large enough to fit the pins? It doesn't hurt to oversize your holes by at
least five mils to ensure that everything will fit together.

v Are your pads large enough? Again, oversizing your pad dimensions (w.r.t. the component's
foot dimensions) by a few mils is good practice. Also, making the pad extend ten or more
mils outward from the end of the foot will give you a place to put your soldering iron while
assembling the board.

v s the pad spacing correctly set?

v PCB uses mils as the unit of measure for footprints. Sometimes, vendors use metric units in
defining footprints. This is particularly true for connectors. Make sure you have converted
any metric units into mils in your footprints.

v Are you sure you have the right footprint for the package you have specified? (I have
personally seen several cases where an SO-16 footprint was placed for an MSOP-16 part.
One of these was my fault! Mistakes like this cost money.)

v Mechanicals. Make sure all your parts will fit, and that you haven't squeezed them too close
together. Also, if your board must fit into a constrained space, or satisfy height restrictions,
make sure that you have properly incorporated these constraints into your design. Since PCB
doesn't have the concept of keepouts or height restrictions, you need to verify these
constraints manually.

Do — When you are done with your layout, make sure you inspect the Gerber files using a Gerber
viewer. This important step will help you catch errors which might not have shown up within PCB.
Several free Gerber viewers exist on the net; a quick Google search will identify several for you. On

Windows, I use “GCPrevue”. On Linux, a decent Gerber viewer is “gerbv”.

Do — Perform a trial placement using your parts. Once you have created your PCB, print it out on a

p. 12 of 27

PostScript printer using 1:1 scaling, and place all your parts onto their footprints. This is a great way
to catch footprint (and other layout) errors.

Do — Use solder mask over bare copper to prevent solder migration. Solder mask tolerances: Screen
printed solder masks can be used to produce masks with 15 mil spacing. Photo-imaged solder masks
can achieve spacings down to around 3 mils.

Do — Inspect your layout and verify that all plane regions are connected to their respective nets.
Thermals are placed manually in PCB, so it is easy to forget them. This is particularly important if
your board has internal plane layers, since you can't easily rework an internal layer. You might also
want to verify that the plane layers do have voids (antipads) around non-connected vias or pins.

Do — Inspect your layout to verify that all text annotations are done on the silkscreen layer. PCB's
DRC checker will not identify shorts occurring because of text on a metal layer. Also, verify that
your silkscreened text doesn't get too close to metal pads — if your board manufacturer has

registration problems, silkscreen can get on your pads, and you won't be able to solder to that pad.

Don't — Solder masks should not cover a fiducial or the fiducial clearance area since it could cause
oxidation and interfere with automated location of the fiducial.

Don't — Don't allow solder mask contamination on component pads. Solder mask on pads can cause
failures since you can't reliably solder a component's foot to a pad through solder mask.

Don't — Beware of skimping on solder mask. If you allow closely spaced, un-masked copper areas,

short circuits via solder bridging can occur when the components are soldered down. This problem
can be particularly acute if you are wave soldering your parts.

p. 13 of 27

Element

The “Element” tag defines the top-level information required to define a footprint for a particular part.
The Element head holds information pertinent to the footprint as a whole. Within the Element macro
body are the individual graphical components of the footprint. The Element body is the code with in
the parentheses.

Format
The preferred format of this graphical element is given below in bold.

Element [SFlags "Desc" "Name" "Value" MX MY TX TY TDir TScale TSFlags] (
Element (NFlags "Desc" "Name" "Value" MX MY TX TY TDir TScale TNFlags) (
Element (NFlags "Desc" "Name" "Value" TX TY TDir TScale TNFlags) (
Element (NFlags "Desc" "Name" TX TY TDir TScale TNFlags) (
Element ("Desc" "Name" TX TY TDir TScale TNFlags) (

. element body ...

)
Note that either mils or 1/100's of a mil are allowable for the Element tag. This is signaled by the use of

round “()” (mils) or square “[]” (1/100 mil) brackets. Also, the distinction between absolute and
relative coordinates is specified by the use of round or square brackets.

Detailed description

Item Allowed value Explanation Comment
SFlags Symbolic flags (strings) Symbolic flags applying to the
element as a whole.
NFlags Numeric (hex) flags Numeric flags applying to the
element as a whole.
Desc string (surrounded by The name of the footprint or This field is filled out by
double quotes) footprint file. This is one of the gsch2pcb or PCB itself.
three strings which can be displayed Leave an empty string
on the screen. (“”’) when you create
the footprint file.
Name string (surrounded by The name of the element, usually This field is filled out by
double quotes) the reference designator. gsch2pcb or PCB itself.

Leave an empty string
(“”’) when you create
the footprint file.

Value string (surrounded by value of component on this This field is filled out by
double quotes) particular PCB gsch2pcb or PCB itself.
Leave an empty string
(“”’) when you create
the footprint file.

p. 14 of 27

Item Allowed value Explanation Comment
MX Decimal integer (mils or Mark_x. This is the X location of = When creating footprint
1/100 mils) the footprint's mark. It tells PCB file set to 10 mil so
where to place the footprint when part's initial position is
first read into your layout. Later, on working area of
when you place the component, board.
PCB will reset this value.
MY Decimal integer (mils or Mark_y. This is the X location of =~ When creating footprint
1/100 mils) the footprint's mark. It tells PCB file set to 10 mil so
where to place the footprint when part's initial position is
first read into your layout. Later, on working area of
when you place the component, board.
PCB will reset this value.
TX Decimal integer (mils or Text pos X. Refdes initial position Must experiment in
1/100 mils) X coordinate w.r.t. mark location. order to find optimal
Later, PCB will reset this value initial location for text.
when you move the refdes.
TY Decimal integer (mils or Text Pos Y. Refdes initial position Must experiment in
1/100 mils) Y coordinate w.r.t. mark location. order to find optimal
Later, PCB will reset this value initial location for text.
when you move the refdes.
TDir decimal integer The relative direction of the text.
0 = horizontal
1 =CCW 90 deg
2 =180 deg
3=CW 90 deg
TScale decimal integer Size of the text, as a percentage of Usually set to 100.
the "default" size of of the font (the
default font is about 40 mils high).
Default is 100 (40 mils).
TSFlags string (surrounded by Symbolic flags applying to the text
double quotes) accompanying the footprint.
TNFlags unsigned hex value Hex flags applying to the text

accompanying the footprint.

p. 15 of 27

Example 1 — Old (deprecated) file format

This example shows the old round bracket file format. This usage is now deprecated in favor of the
new, square bracket file format (shown in Example 2 below). The old file format is exemplified here
for purposes of documentation only.

El ement (0x00 "Surface Mount Chip Resistor 0603" "" "" 0 0 -31 -82 0 100 0x00)
(

Pad(-2 0 2 0 39 30 50 "pad 1" "1" 0x00000100)
Pad(65 0 69 0 39 30 50 "pad 2" "2" 0x00000100)
El ement Li ne(-21 -35 87 -35 5)
El ementLine(87 -35 87 35 5)
El ementLine(87 35 -21 35 5)
El ementLine(-21 35 -21 -35 5)

)

This example defines an 0603 SMT resistor having two solder pads and four ElementLines on the
silkscreen layer to define the land pattern. Note that the dimensions held in this example are in mil
units because they are held in round brackets. This usage is deprecated! Please use square bracket
format shown in example 2.

Example 2 — New file format

This example shows a TO-18 transistor footprint. This element entry uses the new, square bracket file
format. It also exemplifies how to use the new, string-based flags. Please use this format for all new
footprints!

El erent["" "TO 18" "" "" 65000 287500 - 6000 3500 0 100 ""]
(

Pi n[- 10000 10000 6000 2000 6600 2800 "" "C' "edge2"]
Pi n[- 10000 0 6000 2000 6600 2800 "" "B" "edge2"]
Pin[O O 6000 2000 6600 2800 "" "E" "square, edge2"]
El enent Li ne [7500 3000 11500 3000 600]

El enent Li ne [11500 3000 11500 7000 600]

El enent Li ne [11500 7000 7500 7000 600]

El enent Arc [-5000 5000 10500 10500 270 90 600]

El ement Arc [-5000 5000 10500 10500 180 90 600]

El enent Arc [-5000 5000 10500 10500 O 90 600]

El ement Arc [-5001 4999 10501 10501 90 90 600]

El ement Arc [-5000 5000 12500 12500 270 90 600]

El ement Arc [-5001 5001 12501 12501 180 90 600]

El ement Arc [-5000 5000 12500 12500 90 90 600]

El ement Arc [-5001 5001 12499 12499 0 90 600]

p. 16 of 27

Pad

The Pad element is held within the body of a footprint (Element). It describes a single rectangular
metalization serving as a land pattern for an SMT device. Note that either mils or 1/100's of a mil are
allowable for the Pad tag. This is signaled by the use of round “()” (mils) or square “[]” (1/100 mil)
brackets. The distinction between relative and absolute units is determined by the type of brackets used
in the enclosing “Element” tag.

Format
The preferred format of this graphical element is given below in bold.

Pad [rX1 rYl rX2 rY2 Thickness Cl earance Mask "Name" "Number" SFl ags]
Pad (rX1 rY1l rX2 rY2 Thickness C earance Mask "Name" "Number" NFl ags)
Pad (aXl aYl aX2 aY2 Thickness "Nane" "Nunber" NFI ags)

Pad (aXl aYl aX2 aY2 Thickness "Name" NFl ags)

Detailed description

Item Allowed value Explanation Comment
rX1 Decimal integer (mils X coord of first point of line segment. r = units relative to the
aX1 or 1/100 mils) See figure. mark.
a = absolute units.
rYl Decimal integer (mils Y coord of first point of line segment. r = units relative to the
aY1 or 1/100 mils) See figure mark.
a = absolute units.
X2 Decimal integer (mils X coord of second point of line r = units relative to the
aX?2 or 1/100 mils) segment. See figure mark.
a = absolute units.
rY2 Decimal integer (mils Y coord of second point of line r = units relative to the
aY?2 or 1/100 mils) segment. See figure mark.

a = absolute units.

Thickness Decimal integer (mils Width of metal surrounding line

or 1/100 mils) segment. See figure
Clearance Decimal integer (mils Separation of pad from other This is separation — not
or 1/100 mils) conductors on any layer. See figure. width. Also note factor
of Y2 in definition. See
figure.
Mask Decimal integer (mils Width of solder mask relief. See The solder mask relief,
or 1/100 mils) figure. is the area around the

pad where the solder
mask is not applied.

p. 17 of 27

Item Allowed value Explanation Comment

Name string (surrounded by Name of pad. Arbitrary identification Set to pad number.
double quotes) string.

Number string (surrounded by Pad number. Used in attaching rats, so Set to pad number.
double quotes) it must be consistent with the

definition in the netlist.

SFlags string (surrounded by Symbolic flags applying to the pad.
double quotes)

NFlags unsigned hex value Hex flags applying to the pad. Hex codes described in
separate section below.

As shown in the figure below, a pad's dimensions are defined by a line segment with endpoints (x1, y1)
and (x2, y2). All other parameters defined in relationship to this line segment.

(X1, Y1) (X2,Y2)

Thickness/2

Thickness
Mask

Clearance/2

Figure 3: Explanation of dimensions used in Pad tag.

Notes
® Pads of zero thickness will not be drawn.

Example

Pad[- 36284 0 -19881 0 14173 1200 15373 "Positive" "1" "square"]

Note that the dimensions held in this example are in 1/100 mil units because they are held in square
brackets. Also note that the Pad's tags are called out using strings (e.g. “square”).

p. 18 of 27

Pin

The Pin element is held within the body of a footprint (Element). It defines a single through hole with
surrounding metal pad. The Pin tag is usually used to create a footprint for a through-hole part. It can
also be used to create a through-hole used for mounting parts to the board, or for mounting the board
itself. Note that either mils or 1/100's of a mil are allowable for the Pin tag. This is signaled by the use
of round ““()” (mils) or square “[]” (1/100 mil) brackets. The distinction between relative and absolute
units is determined by the type of brackets used in the enclosing “Element” tag.

Format
The preferred format of this graphical element is given below in bold.

Pin [rX rY Thi ckness
Pin (rX rY Thickness

Cl earance Mask Drill "Nane" "Nunber" SFl ags]
Ce
Pin (aX aY Thickness Dri
Dri
Ill\b'

arance Mask Drill "Nanme" "Nunber" NFl ags)
Il "Nanme" "Nunber" NFI ags)

[l "Nanme" NFl ags)

me" NFl ags)

Pin (aX aY Thi ckness
Pin (aX aY Thi ckness

Detailed description

Item Allowed value Explanation Comment
rX Decimal integer (mils or x coordinate of pin r = units relative to the
aX 1/100 mils) mark.
a = absolute units.
rY Decimal integer (mils or 'y coordinate of pin r = units relative to the
aY 1/100 mils) mark.
a = absolute units.
Thickness Decimal integer (mils or Outer diameter of copper annulus
1/100 mils)
Clearance Decimal integer (mils or Add to thickness to get clearance This is separation — not
1/100 mils) diameter diameter. Also note
factor of ¥2 in definition.
See figure.
Mask Decimal integer (mils or Diameter of solder mask opening
1/100 mils)
Drill Decimal integer (mils or diameter of drill hole
1/100 mils)
Name string (surrounded by Pin name. This is an arbitrary
double quotes) name for the pin.
Number string (surrounded by Pin number. This value is used by
double quotes) PCB to attach nets.

p- 19 of 27

Item Allowed value Explanation Comment
SFlags string (surrounded by Symbolic flags applying to the
double quotes) pin
NFlags unsigned hex value Numeric (hex) flags applying to Hex codes described in

the pin

separate section below.

The various dimensions defining a pin are shown in the illustration below.

Example

Figure 4: Definitions of dimensions used in Pin tag.

Pin[O O 7000 3000 7000 3500 "1" "1" "square"]

Note that the dimensions held in this example are in 1/100 mil units because they are held in square

brackets.

p- 20 of 27

Also note that the Pin's tags are called out using strings (e.g. “square”).

ElementLine

The ElementLine macro draws line segments on the silk screen layer associated with the layer the
device is placed upon (i.e. component or solder side of the board). If the component is placed on the
top side of the board, the line is drawn in silkscreen on the top (component) side of the board. If the
component is placed on the bottom side of the board, the line is drawn using silkscreen on the bottom
(solder) side of the board.

Note that either mils or 1/100's of a mil are allowable for the ElementLine tag. This is signaled by the
use of round “()” (mils) or square “[]” (1/100 mil) brackets. The distinction between relative and
absolute units is determined by the type of brackets used in the enclosing “Element” tag.

Format
The preferred format of this graphical element is given below in bold.

El enentLine[rX1 rY1l rX2 rY2 Thickness]
El ementLine(rX1 rY1 r X2 rY2 Thickness)
El enent Li ne(aXl aYl aX2 r Y2 Thi ckness)

Detailed description

Item Allowed value Explanation Comment
rX1 Decimal integer (mils X coord of first point of segment. See r = units relative to the
aX1 or 1/100 mils) figure. mark.
a = absolute units.
rYl Decimal integer (mils Y coord of first point of segment. See r = units relative to the
aY1 or 1/100 mils) figure mark.
a = absolute units.
rX2 Decimal integer (mils X coord of second point of segment. r = units relative to the
aX?2 or 1/100 mils) See figure mark.
a = absolute units.
rY2 Decimal integer (mils Y coord of second point of segment. r = units relative to the
aY?2 or 1/100 mils) See figure mark.

a = absolute units.

Thickness decimal integer (mils Thickness of line segment on silkscreen
or 1/100 mils) layer.

Example
El enent Li ne [-16000 -39100 59200 -39100 1000]

Note that the dimensions used in this example are in 1/100 mil units because they are held in square
brackets.

p- 21 of 27

ElementArc

An ElementArc is usually used to draw a circle or oval on the silkscreen layer. It can also be used to
draw an arc (i.e. incomplete circle) on the silkscreen layer. If the component is placed on the top side
of the board, the circle or oval is drawn in silkscreen on the top (component) side of the board. If the
component is placed on the bottom side of the board, the circle or oval is drawn in silkscreen on the
bottom (solder) side of the board.

Note that either mils or 1/100's of a mil are allowable for the ElementLine tag. This is signaled by the
use of round “()” (mils) or square “[]” (1/100 mil) brackets. The distinction between relative and
absolute units is determined by the type of brackets used in the enclosing “Element” tag.

Format
The preferred format of this graphical element is given below in bold.

ElementArc [rX rY Wdth Height StartAngl e DeltaAngl e Thi ckness]
El ementArc (rX rY Wdth Height StartAngl e DeltaAngl e Thi ckness)
El ement Arc (aX a¥Y Wdth Hei ght StartAngl e Del taAngl e Thi ckness)

Detailed description

Item Allowed value Explanation Comment
rX Decimal integer x coordinate of arc's center point. r = units relative to the
aX (mils or 1/100 mils) mark.
a = absolute units.
rY Decimal integer y coordinate of arc's center point. r = units relative to the
(mils or 1/100 mils) mark.
aYy
a = absolute units.
Width Decimal integer The width from the center to the edge. For circle, use Width =
(mils or 1/100 mils) The bounds of the circle of which this Height. For oval, Width
arc is a segment, is thus 2*Width by will be different from
2*Height. Height.
Height Decimal integer The height from the center to the For circle, use Width =
(mils or 1/100 mils) edge. The bounds of the circle of Height. For oval, Width
which this arc is a segment, is thus will be different from
2*Width by 2*Height. Height.
StartAngle Decimal integer The angle of one end of the arc, in
between 0 and 360 degrees. In PCB, an angle of zero
degrees. points left (negative X direction), and
90 degrees points down (positive Y
direction).

p. 22 of 27

Item Allowed value

DeltaAngle Decimal integer
between 0 and 360
degrees.

Thickness

Example

El ement Arc[0 O 9850 9850 210 300 1000]

Explanation

The sweep of the arc. This may be
negative. Positive angles sweep
counterclockwise.

Thickness of line segment on
silkscreen layer.

Comment

Usually use 360 for full
circle or oval.

Incomplete circles —i.e.
arcs -- are also possible.

Note that the dimensions held in this example are in 1/100 mil units because they are held in square

brackets.

p. 23 of 27

Important Flags

Two types of flags are supported for use in footprint files: A legacy hex flag, and a newer string flag:

® Hex flags: The older hex flags capture modifiers to the graphical element as individual bits in the
“NFlags” field. The flag bits are “or'ed” into a single hex value which is incorporated into the pad
or pin declaration. For example: 0x0101 is a square pin.

e String flags: The new string flags capture modifiers to the graphical element as a comma-separated
string list in the “SField”. For example: “showname,square” defines a square pin/pad with name
visible. Do not place spaces or whitespace between the names!

Detailed description

Mnenomic Hex String value Explanation Comment
(#define in PCB code) value
NOFLAG 0x0000 =~ NULL value or empty
string.
PINFLAG 0x0001 “pin” This is a pin Set by PCB, not by user.
VIAFLAG 0x0002 “via” This is a via Set by PCB, not by user.
HOLEFLAG 0x0008 “hole” This pin or via is only a
hole.
DISPLAYNAMEFLAG 0x0020 “‘showname” Display the names of (Name contained in
pins/pads “pin/pad” tag)
ONSOLDERFLAG 0x0080 “onsolder” Place this pad on solder Use to flag pads on
side opposite side of board
from other graphical
elements. Useful for
placing copper on
opposite side of board
(e.g. for defining edge
connectors).
SQUAREFLAG 0x0100 “square” Pin is square, not round.
OCTAGONFLAG 0x0800 “octagon” Draw pln or via as

octagon instead of
round.

p. 24 of 27

Mnenomic Hex String value Explanation Comment

(#define in PCB code) value

EDGE2FLAG 0x4000 “edge2” For pads, indicates that
the second point is
closer to the edge. For
pins, indicates that the
pin is closer to a
horizontal edge and thus
pinout text should be
vertical.

p. 25 of 27

Glossary

o Component side — The top side of the PCB is traditionally called the “component side” since that's
where the electronic components were mounted back in the old days of one-sided boards.

® Footprint — The pattern of metal, silkscreen, soldermask relief, and drills which defines where you
place a component on a circuit board. Footprints are the placed by the user onto the PC board during
the “component placement” phase of PCB layout.

® Gang Solder Mask Window — A solder mask window large enough to cover more then one pad.
Traces not part of the net could become accidentally soldered to a nearby pad.

Figure 5: A solder mask window for four pads. Note that the
pads are "ganged" -- there is no solder mask between the
individual pads. This part must be carefully hand-soldered so
that no solder bridges develop between the pads.

® Grid placement courtyard — A grid placement courtyard is a placement courtyard which assumes
that all footprint mark positions lie on a grid. The requirement that all components lie on a grid is
driven by the needs of automated board assembly machines. If you are hand assembling your board,
then you don't need to worry about this.

® Gerber file — The file format used in the industry to convey a board database to the manufacturer is
RS-274-X (which replaces the now obsolete RS-274-D format). This file format was originally
developed by the Gerber company for their photo plotters and thus RS-274-D and RS-274-X format
files are often times referred to as "Gerber" files. PCB exports RS-274-X only.

e Land pattern — synonym for “footprint™.

® Placement courtyard — This is the total area encompassed by a footprint. The placement
courtyard's primary purpose is to give you a guideline for placing footprints next to each other while
providing enough spacing between them to compensate for component tolerances. Courtyards are
used to ensure that your parts will fit into the allotted space, but they do not compensate for
assembly machine heads or other manufacturing tolerances. One component's placement courtyard
is not meant to overlap with the next one's.

p. 26 of 27

® Pocket Solder Mask Window — A window in the solder mask which covers a single pad (see figure
below). This requires greater tolerances in creating the solder mask. This may be required in order to
run traces between the pads.

JUL

Figure 6: Pocket solder mask window. Here, the two pads
on the left are individually windowed. This prevents solder
from bridging between the two pads, but requires higher
fabrication tolerances to ensure that solder mask does not
accidentally impinge on a pad.

® Solder Mask — Is a coating applied over the surface of the PCB which prevents the covered area
from being soldered to. Usually only component pads and pin holes are left exposed. Traces left
exposed can be inadvertently soldered to.

® Solder side — The bottom side of the PCB is traditionally called the “solder side” since that's where
the component leads were soldered to the PCB's traces back in the old days of one-sided boards.

® Thermal/Thermal relief — A thermal relief is a way of connecting a pin to a ground or power plane.
Instead of directly connecting to the plane, small "spokes" are used to increase the thermal resistance
between the pin and the plane. Often times these connections are referred to as simply a thermal. By
increasing the thermal resistance to the plane, it becomes easier to solder to the pin. The figure
below shows an example thermal relief.

ie)

Uia/Pin With Uia/Pin Without

Tl’wermal T%ermcﬂ

Figure 7: The hole on the left has a thermal making a connection to a plane. The
hole on the right does not connect to the plane at all.

p. 27 of 27

	Introduction
	How footprints are used in your .pcb file
	Peculiarities of PCB
	Developing a new footprint for PCB – work flow
	Anatomy of a footprint
	Footprint creation do's and dont's
	Element
	Pad
	Pin
	ElementLine
	ElementArc
	Important Flags
	Glossary

